学霸从改变开始追书网更新最快,(请牢记追书网网址:https://www.zhuishu5.com)

br />     不过,距离完整的纲领,仍然非常遥远。

    但必须要提的是,朗兰兹纲领的范围,也还在不短扩展。

    类比经典的纲领,数学家们又发展出了几何朗兰兹、p-adic朗兰兹。

    甚至于在物理上,爱德华·威腾教授还提出了类似的朗兰兹对偶。

    它们牵涉到了非常不同的领域,使用的也是非常不同的方法。

    但是它们都展现出了,极深层次的相似性。

    从不同的角度,丰富了朗兰兹纲领本身。

    而朗兰兹纲领一个最新的,并且值得一提的进展,来自于德国的天才数学家彼得·舒尔茨正在进行的工作。

    舒尔茨利用由他发展的p-adic几何类比函数域的情形,去证明局部数域的情形。

    想到这,陈舟的嘴角露出了一丝微笑。

    随即,他再次拿出一张新的草稿纸,快速的在上面写着。

    陈舟终于知道先前那种奇怪的感觉是什么了。

    一开始,他只是打算梳理“伽罗瓦群的阿廷L函数的线性表示”这个课题,所牵涉的研究内容。

    可随着时间的推移,陈舟居然就这么,虽显粗糙,但还算完整的,以黎曼ζ函数和L函数为线索,梳理了一遍现代数学。

    并且把现代数学里,特别是代数几何领域的重要问题,列了一遍。

    这里面,包括了代数几何、代数拓扑、代数数论、调和分析、自守形式、平展上同调、伽罗瓦表示、MotivicL函数、朗兰兹纲领、BSD猜想、贝林森猜想、阿廷猜想,等等等等。

    更加令陈舟没想到的是,他梳理的所有内容,竟然都有着一丝联系。

    这也从另一个角度,令陈舟明白了一件事。

    那就是,现在的数学,没有纯粹意义上的独立的数学分支。

    每个数学分支都是交叉互融的。

    陈舟也有一丝庆幸。

    庆幸自己构造了出了分布解构法这个数学工具,并且在不断的完善它。

    很快,陈舟停下了手中的笔。

    草稿纸上,出现了一幅示意图。

    陈舟把这些内容,完整的用图示的方法,展示了出来。

    里面有猜想,也有已知的结果。

    但是,从现在来看,陈舟所梳理内容中,几乎所有的猜想,都还非常遥远。

    每一个也许都足以耗尽一个人的毕生精力。

    然而,正是其困难和深刻,吸引了无数人。

    某种程度上,数学家和探险家,其实是一类人。

    真要说起来,从某种角度来看,陈舟先前解决的克拉梅尔猜想也好,杰波夫猜想也好,都只是解析数论这一小块的。

    放在整个现代数学来看,真的不算什么。

    可以说是,渺小之数学。

    但也正是这种每一步的渺小,每一个人的渺小,才成就了伟大之数学。

    看着眼前的图,陈舟内心那种奇怪的感觉,已经消失不见。

    当你正面自己的想法和感觉时,所有的一切,都豁然开朗。

    陈舟的嘴角露出一丝笑意,他忽然有一个奇怪的想法。

    他是不是应该去感谢一下这位诺特学姐?

    因为……

    要不是因为诺特学姐的邀请,他也不会回

-->>

本章未完,点击下一页继续阅读

章节目录