脑回路清奇的主角们追书网更新最快,(请牢记追书网网址:https://www.zhuishu5.com)
数据卡尺的定义:用最少的明文,来记录一个相当大的数据,相当于把大数据压缩成明文可解压缩算式。
1:无理数压缩方式
1.1:开任意素数的任意次方根
1.2:X的任意次方=X+任意正整数;X的任意次方=X-任意正整数
1.3:不相等的两个任意素数,互为被除数
1.4:素数A大于素数B;素数A-素数B=小数C;素数A+素数B=大数D;小数C乘以素数B=大数D乘以素数A;这个方程式,并没有验证,可能是另外一种黄金分割?;小数C除以素数A=大数D除以素数B
1.5:素数的N次方=该素数的阶乘,那么这个N就是一个无理数
1.6:无理数的无理数次方是否可以等于一个有理数?
1.7:素数A大于素数B;素数A-素数B=小数C;素数A+素数B=大数D;素数A乘以小数C加上大数D=素数B的正整数次方?
1.8:A的B次方加上C的D次方加上E的F次方=G的H次方,ABCDEFGH互不相等且都是正整数;也可以是减去;然后使用正整数作为被开N次方的数,哪个数被开哪个数次方,从而生成互可溯源的无理数。
1.9:无数个小素数取小素数次方,然后相加兼或相减,最后等于一个大素数的任意素数次方,然后用这些素数来生成足够多的无理数。
2:有理数压缩方式
2.1:素数的递减阶乘乘方
2.1.1:如,13的素数的递减乘方=13^11^7^5^3^2;
2.2:素数的递增阶乘乘方(有起点和终点)
2.3:素数阶乘的递减阶乘乘方
2.3.1:如,13的素数的素数阶乘的递减阶乘乘方=13!^11!^7!^5!^3!^2!
2.4:进制转换法,也就是使用任意数取其除数和商,只需要记录上余数和商和除数,就能速推出原始数据大小,而因为大数据本身数据足够大,也就要求,最好是除数和商,都是取任意正整数的任意正整数次方兼或任意正整数的阶乘,然后余数记录下来,需要还原时,再把数据给算回去。
2.5:把大数据使用素数去除,然后得出商和余数。
2.6:大数据的三步压缩方式
第一步:测试使用开素数次方根的方式,取其能够最近似于取谁的素数次方根;例如19的平方=361,如果数据是365,那么就等于19的平方和次方余数为4。
第二步:如果次方余数依旧足够大,那么再次进行运算,看是适合开素数次方根,然后不要其小数点后面的数,再把小数点前面的数记录下来,然后用该数来进行N次方,获得最接近源数据的结果,然后源数据-最大接近数=余数,然后余数足够大,就继续开最大接近数,获得新的余数。
示例:123456789987654321的987654321123456789次方=?,这个数是不是达到ZB大小?
123456789987654321^987654321123456789
3:既然任何数,都可以表达为正整数有理数+无理数小数点后取的N位的方式,那么任何貌似不规则的足够长度的数据,都可以记录为正整数有理数算法+取无理数小数点后N位+一些最少的特定位的替换成特等数,就能把1ZB数据用1KB给记录下来,存储在一个U盘中,这套算法就命名为ZB2KB好了,把ZB给压缩(TO→2)到KB大小。
数据卡尺本身就可以作为一个无限接近的模糊解压缩方式,用百分之二十的算术,生成百分之八十的数据,然后再用百分之八十的算术,来生成接下来百分之二十的数据,就直接把数据给解压缩成功了,也就是这种算法,本身就支持多核心处理器使用。
还有作者之前使用WINHEX时的猜想:
1:记录文件大小
2:记录文件各种校验码(MD4,MD5,哈希值)【用上CHECKSUM(8bit),CHECKSUM(16bit),CHECKSUM(32bit),CHECKSUM(64bit),CHECKSUM(256???bit),CRC(16比特和32比特)和其他哈希值】,然后使用数据卡尺生成的只有公差的信息,然后进行有限的穷举。
比如说,数据卡尺告知,数据大于3.1415926,而小于3.1415927,那么根据哈希值的最终确认,就能还原出来,压缩是就要进行解压缩测试,发现哈希值对应同样长度数据不同时,需要标记出来,按照数值大小来排列,然后指出是其中哪一个。
压缩的文件,只适合于存储和网络上传和下载。
压缩的文件,是,模糊,只需要应用大压缩文件的百分之一的累赘。
片段化压缩方式,可以把一些内容分批的压缩,然后方便和只应用大压缩文件中很小一部分。
片段化压缩方式,就是为了不完全解压缩的方式应用压缩文件。
数据卡尺的定义:用最少的明文,来记录一个相当大的数据,相当于把大数据压缩成明文可解压缩算式。
1:无理数压缩方式
1.1:开任意素数的任意次方根
1.2:X的任意次方=X+任意正整数;X的任意次方=X-任意正整数
1.3:不相等的两个任意素数,互为被除数
1.4:素数A大于素数B;素数A-素数B=小数C;素数A+素数B=大数D;小数C乘以素数B=大数D乘以素数A;这个方程式,并没有验证,可能是另外一种黄金分割?;小数C除以素数A=大数D除以素数B
1.5:素数的N次方=该素数的阶乘,那么这个N就是一个无理数
1.6:无理数的无理数次方是否可以等于一个有理数?
1.7:素数A大于素数B;素数A-素数B=小数C;素数A+素数B=大数D;素数A乘以小数C加上大数D=素数B的正整数次方?
1.8:A的B次方加上C的D次方加上E的F次方=G的H次方,ABCDEFGH互不相等且都是正整数;也可以是减去;然后使用正整数作为被开N次方的数,哪个数被开哪个数次方,从而生成互可溯源的无理数。
1.9:无数个小素数取小素数次方,然后相加兼或相减,最后等于一个大素数的任意素数次方,然后用这些素数来生成足够多的无理数。
2:有理数压缩方式
2.1:素数的递减阶乘乘方
2.1.1:如,13的素数的递减乘方=13^11^7^5^3^2;
2.2:素数的递增阶乘乘方(有起点和终点)
2.3:素数阶乘的递减阶乘乘方
2.3.1:如,13的素数的素数阶乘的递减阶乘乘方=13!^11!^7!^5!^3!^2!
2.4:进制转换法,也就是使用任意数取其除数和商,只需要记录上余数和商和除数,就能速推出原始数据大小,而因为大数据本身数据足够大,也就要求,最好是除数和商,都是取任意正整数的任意正整数次方兼或任意正整数的阶乘,然后余数记录下来,需要还原时,再把数据给算回去。
2.5:把大数据使用素数去除,然后得出商和余数。
2.6:大数据的三步压缩方式
第一步:测试使用开素数次方根的方式,取其能够最近似于取谁的素数次方根;例如19的平方=361,如果数据是365,那么就等于19的平方和次方余数为4。
第二步:如果次方余数依旧足够大,那么再次进行运算,看是适合开素数次方根,然后不要其小数点后面的数,再把小数点前面的数记录下来,然后用该数来进行N次方,获得最接近源数据的结果,然后源数据-最大接近数=余数,然后余数足够大,就继续开最大接近数,获得新的余数。
示例:123456789987654321的987654321123456789次方=?,这个数是不是达到ZB大小?
123456789987654321^987654321123456789
3:既然任何数,都可以表达为正整数有理数+无理数小数点后取的N位的方式,那么任何貌似不规则的足够长度的数据,都可以记录为正整数有理数算法+取无理数小数点后N位+一些最少的特定位的替换成特等数,就能把1ZB数据用1KB给记录下来,存储在一个U盘中,这套算法就命名为ZB2KB好了,把ZB给压缩(TO→2)到KB大小。
数据卡尺本身就可以作为一个无限接近的模糊解压缩方式,用百分之二十的算术,生成百分之八十的数据,然后再用百分之八十的算术,来生成接下来百分之二十的数据,就直接把数据给解压缩成功了,也就是这种算法,本身就支持多核心处理器使用。
还有作者之前使用WINHEX时的猜想:
1:记录文件大小
2:记录文件各种校验码(MD4,MD5,哈希值)【用上CHECKSUM(8bit),CHECKSUM(16bit),CHECKSUM(32bit),CHECKSUM(64bit),CHECKSUM(256???bit),CRC(16比特和32比特)和其他哈希值】,然后使用数据卡尺生成的只有公差的信息,然后进行有限的穷举。
比如说,数据卡尺告知,数据大于3.1415926,而小于3.1415927,那么根据哈希值的最终确认,就能还原出来,压缩是就要进行解压缩测试,发现哈希值对应同样长度数据不同时,需要标记出来,按照数值大小来排列,然后指出是其中哪一个。
压缩的文件,只适合于存储和网络上传和下载。
压缩的文件,是,模糊,只需要应用大压缩文件的百分之一的累赘。
片段化压缩方式,可以把一些内容分批的压缩,然后方便和只应用大压缩文件中很小一部分。
片段化压缩方式,就是为了不完全解压缩的方式应用压缩文件。