学霸的星辰大海追书网更新最快,(请牢记追书网网址:https://www.zhuishu5.com)

引力势能为零,则质量分别为m、m的两个质点相距为r时的引力势能ep=r分之gmm,式中g为引力常量。在飞船沿轨道1和轨道2的运动过程,其动能和引力势能之和保持不变,探测器被『射』出后的运动过程中,其动能和引力势能之和也保持不变。

    1求探测器刚离开飞船时的速度大小;

    2已知飞船沿轨道2运动过程中,通过a点与b点的速度大小与这两点到地心的距离成反比。根据计算结果说明为实现上述飞船和探测器的运动过程,飞船与探测器的质量之比应满足什么条件。

    题目下面画着的时候飞船返回地球的图。

    ‘这题,有点意思。’

    拿着笔的吴斌两眼发光。

    第一问没什么难度,很简单的两方程联立求出大概算第一宇宙速度的答案。

    吴斌拿起笔就开始写。

    解:设地球质量为m,飞船质量为m,探测器质量为m’,当飞船与探测器一起绕地球做圆周运动时的速度为vo

    根据万有引力定律和牛顿第二定律有(kr)2分之gm(m+m’)(m+m')kr分之vo2

    对于地面附近的质量为mo的物体有mog=gmmo/r2

    解得:vo=根号k分之gr

    第一问是很简单,但这第二问就有点意思了,题目给出了一个引力势能的式子,里面小坑相当多,总之先不要慌,不要想为啥是无限远,为啥引力势能带负号,这都是做完再想的事。

    首先很明显,这里动能势能和不变,机械能守恒的表达式是ek+ep=0

    所以就能把ep带代入进去。

    得到

    2分之1mv2-kr分之gmm=0

    就解得:v’=根号kr分之2gm=根号2vo=根号k分之2gr

    第二问2继续来,首先题目给了个条件(实质是开普勒第二定律)

    即rvb=krva

    一般来说,写上这一步应该就有一分了。

    然后很显然在ab两点有机械守恒。

    2分之1mvb2-r分之gmm=2分之1mva2-kr分之gmm

    算到这吴斌发现这里并没有另外一个质量。

    ‘嗯……遇事不决列方程!’

    ‘能沟通这两个质量的方程,只有动量守恒方程了吧。’

    想到这吴斌不自觉的点点头,继续往下写。

    (m+m’)vo=mva+m'v'

    最后因飞船通过a点与b点的速度大笑与这两点到地心的距离成反比,即rvb=krva

    解得:m'分之m=1-根号k+1分之2分之根号2-1

    “呼……”

    吴斌吐了口气将笔放了下来。

    “嗯,步骤都对,分数全拿,可以啊!”蔡国平看完十分欣慰的猛拍了一下吴斌的肩膀。

    “挺有意思的,那老师我接着做了。”吴斌说完喵向下一题。

    可蔡国平却突然将卷子一抽,说:“不用做了,既然你能这么轻松就解出这道题,去参加竞赛应该也没问题了。”

    “竞赛?”吴斌一愣。

    “对,全国高中生物理竞赛!”

    ————————————————————————

    ps:题目里有些符号不太好打……就代替了一下。

章节目录